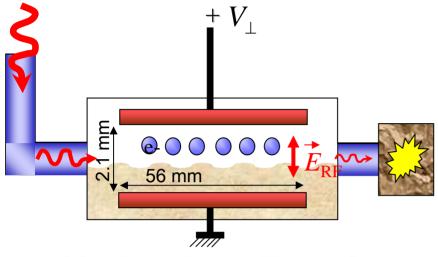
HYSTERESIS AND BLEACHING OF ABSORPTION BY ELECTRONS ON HELIUM

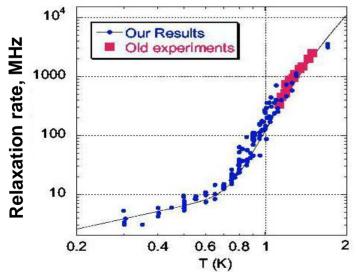
D. Ryvkine,¹ M.J. Lea,² and M.I. Dykman¹

- ¹ Department of Physics and Astronomy, Michigan State University
- ² Royal Holloway, University of London

- Dynamics for slow energy relaxation
- Absorption bleaching
- Many-electron hysteresis

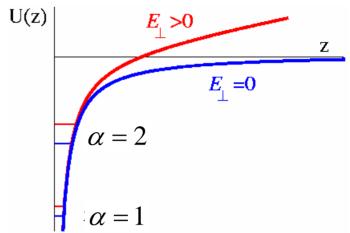
Stark-shift transition frequency by a field

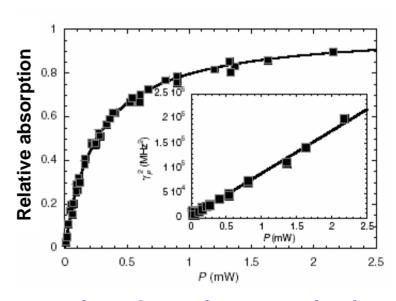




E. Collin et al., PRL (2002)

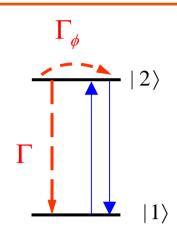
 E_{\perp} to tune to 1- 2 resonance





Interpretation: absorption saturation in a two-level system

Conventional absorption saturation



Nearly resonant driving:

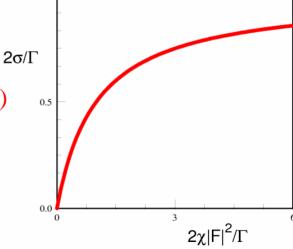
$$H_F = -F \sum_{n} |2\rangle_{nn} \langle 1| \exp(-i\omega_F t) + \text{h.c.}$$
 $F = \frac{1}{2} e E_{cw} z_{12}$

Weak field absorption:
$$\sigma = \chi |F|^2$$
, $\chi = \Gamma_0 / [\Gamma_0^2 + (\omega_{21} - \omega_F)^2]$

Weak-field linewidth is
$$\Gamma_0 = \Gamma + \Gamma_{\phi}$$

Power absorbed per unit time is $\sigma \omega_F$

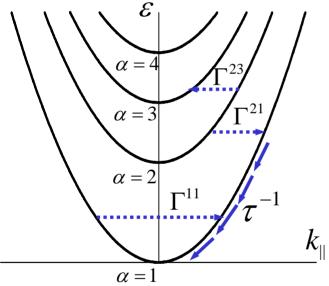
Electrons: bands of in-plane motion instead of energy levels



Electron-electron coupling: thermalization of in-plane motion over time ω_n^{-1} ,

$$\omega_p = (2\pi e^2 n^{3/2} / m)^{1/2} >> \Gamma^{\alpha\beta}$$

Electron in-plane momentum distribution
$$\rho^{\alpha\alpha}(\mathbf{p}) \propto \exp(-p^2/2mT_e)$$
 $(k_B = 1)$



$$\rho^{\alpha\beta} = \langle |\beta\rangle_{n} \langle \alpha| \rangle$$

One-ripplon/vapor atoms scattering is quasi-elastic and short-wavelength, $q >> n^{1/2}$

- intraband scattering,
- interband scattering, $\Gamma^{\alpha\beta}$ $(\alpha \neq \beta)$

$$\Gamma^{\alpha\beta} = 2\pi \sum_{\mathbf{q}} \left| V_{\mathbf{q}}^{\alpha\beta} \right|^2 \left\langle \delta \left(\frac{p^2}{2m} - \frac{(\mathbf{p} + \mathbf{q})^2}{2m} + \varepsilon_{\alpha} - \varepsilon_{\beta} \right) \right\rangle \qquad (\hbar = 1)$$

Energy relaxation: two-ripplon/phonon scattering

$$au^{-1} << \Gamma^{lphaeta} << \omega_p$$

Field Hamiltonian for spatially uniform resonant radiation $F=\frac{1}{2}eE_{\mathrm{cw}}z_{12}$

$$H_F = -F \sum_{n} |2\rangle_{nn} \langle 1| \exp(-i\omega_F t) + \text{h.c.}$$

Frequency detuning is small: $\delta \omega = \omega$

$$\delta\omega = \omega_F - (\varepsilon_2 - \varepsilon_1), \quad |\delta\omega| << \omega_F$$

Short-wavelength scattering, $T_e > \omega_p = (2\pi e^2 n^{3/2} / m)^{1/2}$

→ effectively single-electron kinetic equation for a strongly correlated electron system

In the band index representation

$$\begin{cases} \dot{\rho}^{\alpha\alpha} = -\sum_{\beta} (\rho^{\alpha\alpha} \Gamma^{\alpha\beta} - \rho^{\beta\beta} \Gamma^{\beta\alpha}) + 2(\delta_{\alpha,1} - \delta_{\alpha,2}) \operatorname{Im}(F\rho^{12}) \\ \dot{\rho}^{12} = -(i \delta\omega + \Gamma_0) \rho^{12} + i F^* (\rho^{22} - \rho^{11}) \end{cases}$$
T. Ando, 1978

Detailed balance for fast in-plane thermalization $\Gamma^{\alpha\beta} = \Gamma^{\beta\alpha} \exp[(\varepsilon_\alpha - \varepsilon_\beta)/T_e]$

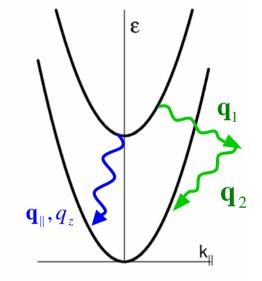
Energy balance equation

$$\frac{dT_e}{dt} = -\frac{T_e - T}{\tau} + \omega_F \operatorname{Im}(F^* \rho^{21})$$

Microscopic mechanisms:

- Energy diffusion from one-ripplon scattering
- Two-ripplon scattering, $|\mathbf{q}_1 + \mathbf{q}_2| << |\mathbf{q}_{1,2}|$
- Decay into phonons: modulation of the He dielectric constant, $q_{\scriptscriptstyle \parallel} << q_{z}$

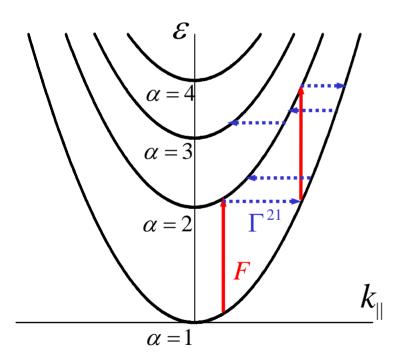
$$V(\mathbf{r}) = -\frac{1}{8\pi} \int d\mathbf{r}' \delta \varepsilon(\mathbf{r}') E^2(\mathbf{r}, \mathbf{r}'), \quad E(\mathbf{r}, \mathbf{r}') = e/|\mathbf{r} - \mathbf{r}'|^2$$



Two-ripplon scattering, kinematic coupling:

$$au^{-1} = au_0^{-1} (T_e / \hbar \omega_F)^{10/3}, \quad T_e << \hbar \omega_F$$
 $au^{-1} \sim au_0^{-1} T_e / \hbar \omega_F, \qquad T_e \ge \hbar \omega_F$

Slow energy relaxation, $\Gamma^{21}\tau>>1$: the rate of field induced transitions does not have to beat the rate of 2 \to 1 relaxation. Excited states are populated and absorption is bleached already for $\left.\chi\right|F\right|^2<<\Gamma^{21}$ due to electron heating, $\left.\chi=\Gamma_0\right./(\Gamma_0^2+\delta\omega^2)$



Equation for electron temperature

Reminder: absorption saturation for a two-level system requires $\left. \chi \middle| F \right|^2 > \Gamma^{21}$

$$\chi |F|^2 << \Gamma^{21}$$
 \longrightarrow thermal distribution over bands in the stationary regime

$$\rho^{\alpha\alpha} = Z^{-1}(T_e) \exp(-\varepsilon_{\alpha}/T_e)$$

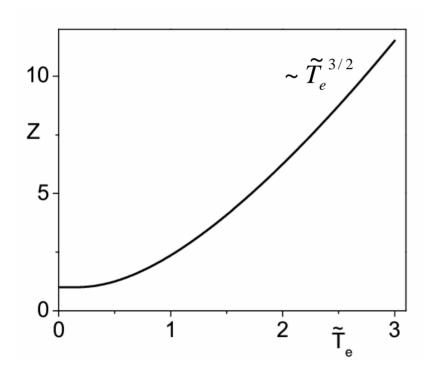
$$Z(T_e) = \sum_{\alpha} \exp(-\varepsilon_{\alpha} / T_e)$$

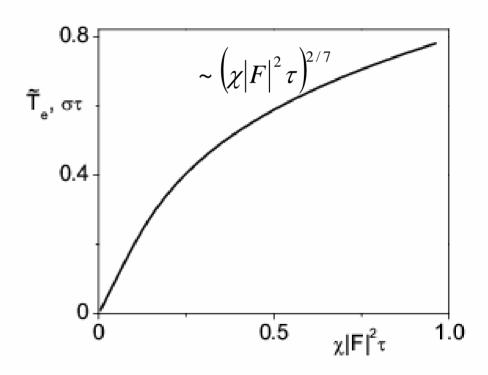
$$\frac{T_e - T}{\tau} = \frac{|F|^2 \chi \omega_F}{Z(T_e)} \left(1 - e^{-\omega_F/T_e}\right)$$

Absorption decrease: thermal population of the state $|2\rangle$ and bleaching

$$\sigma = \frac{|F|^2 \chi}{Z(T_e)} \left(1 - e^{-\omega_F/T_e}\right)$$

Constant energy relaxation rate approximation



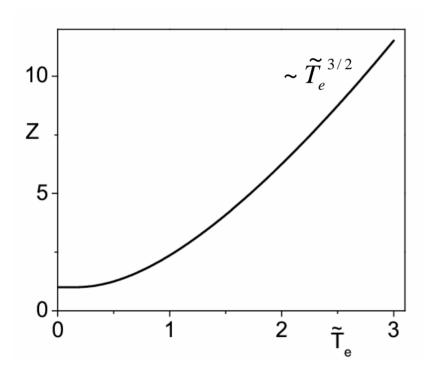


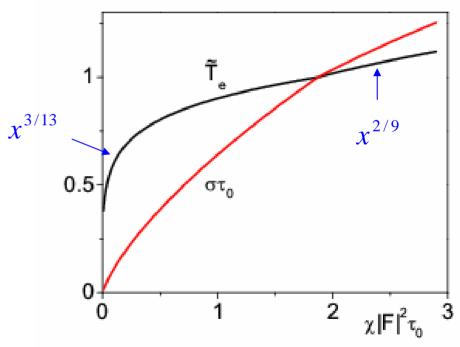
$$\widetilde{T}_e = T_e / \omega_F$$

Absorption decrease: thermal population of the state $|2\rangle$ and bleaching

$$\sigma = \frac{|F|^2 \chi}{Z(T_e)} \left(1 - e^{-\omega_F/T_e}\right)$$

Kinematic two-ripplon scattering





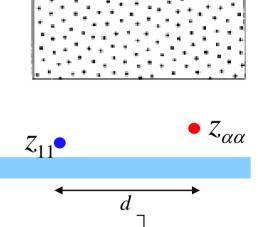
$$\widetilde{T}_e = T_e / \omega_F$$

Strongly correlated electron liquid for $e^2(\pi n)^{1/2} >> T$

Different distance from He surface in different states leads to dependence of electron transition frequency on states of neighboring electrons:

→ many-electron Stark shift

$$\varepsilon_2 - \varepsilon_1 \rightarrow \varepsilon_2 - \varepsilon_1 + \Omega(T_e)$$



"Many" nearest neighbors: mean-field approximation

$$H_{ee} \approx -\frac{e^2}{4} \sum_{n \neq m} (z_n - z_m)^2 / r_{nm}^3$$

$$\Omega(T_e) \approx \left\langle \sum_{m \neq n} e^2 r_{nm}^{-3} \right\rangle \left[(z_{22} - z_{11}) \left(\sum_{\nu} z_{\nu\nu} \rho^{\nu\nu} - z_{11} \right) + |z_{12}|^2 (\rho^{11} - \rho^{22} - 1) \right]$$

$$\approx 8.9 e^2 n^{3/2}$$

Energy balance equation

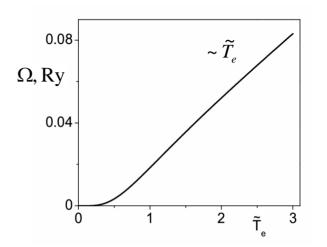
$$\frac{T_e - T}{\omega_F} = \frac{|F|^2 \chi \tau}{Z(T_e)} \left(1 - e^{-\omega_F/T_e}\right) \quad \text{with} \quad \chi = \chi(T_e) = \frac{\Gamma_0}{\Gamma_0^2 + [\delta\omega - \Omega(T_e)]^2}$$

$$\chi = \chi(T_e) = \frac{\Gamma_0}{\Gamma_0^2 + [\delta\omega - \Omega(T_e)]^2}$$

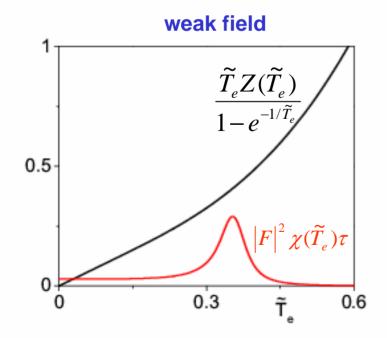
Self-consistent equation for ee temperature

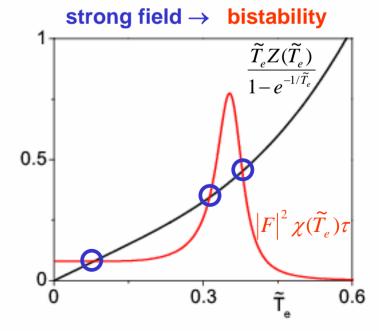
$$\frac{\widetilde{T}_e Z(\widetilde{T}_e)}{1 - e^{-1/\widetilde{T}_e}} = \left| F \right|^2 \chi(\widetilde{T}_e) \tau, \ \widetilde{T}_e = \frac{T_e}{\omega_F}$$

$$\chi(\widetilde{T}_e)$$
 has a narrow peak for $\delta\omega=\Omega(\widetilde{T}_e^*)$ if
$$\left.[d\Omega/\,d\widetilde{T}_e^{}\,]\right|_{\widetilde{T}_e^*}>>\Gamma_0$$



Constant energy relaxation rate approximation



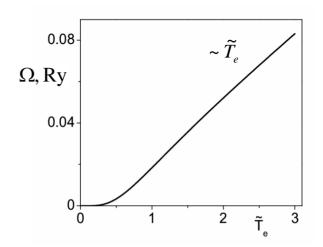


$$\delta\omega/\Gamma_0 = 1, \delta\omega = 0.001$$
Ry

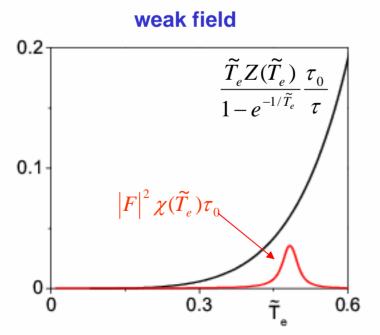
Self-consistent equation for ee temperature

$$\frac{\widetilde{T}_{e}Z(\widetilde{T}_{e})}{1-e^{-1/\widetilde{T}_{e}}} = \left|F\right|^{2}\chi(\widetilde{T}_{e})\tau, \ \widetilde{T}_{e} = \frac{T_{e}}{\omega_{F}}$$

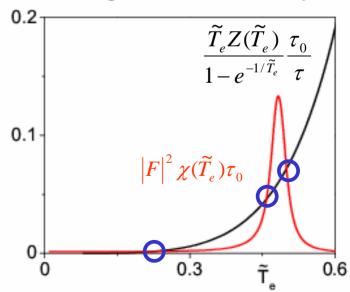
$$\chi(\widetilde{T}_e)$$
 has a narrow peak for $\delta\omega=\Omega(\widetilde{T}_e^*)$ if $[d\Omega/\,d\widetilde{T}_e^{}]\Big|_{\widetilde{T}_e^*}>>\Gamma_0$



Kinematic two-ripplon scattering



strong field → bistability



$$\delta\omega/\Gamma_0 = 10, \delta\omega = 0.003$$
Ry

- Absorption saturation is accompanied by bleaching from electron heating.
- Many-electron shift of transition frequency leads to absorption hysteresis for low helium temperatures
- Electron energy relaxation can be studied via nonlinear absorption experiments